skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shocket, Marta"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The capacity of arthropod populations to adapt to long-term climatic warming is currently uncertain. Here we combine theory and extensive data to show that the rate of their thermal adaptation to climatic warming will be constrained in two fundamental ways. First, the rate of thermal adaptation of an arthropod population is predicted to be limited by changes in the temperatures at which the performance of four key life-history traits can peak, in a specific order of declining importance: juvenile development, adult fecundity, juvenile mortality and adult mortality. Second, directional thermal adaptation is constrained due to differences in the temperature of the peak performance of these four traits, with these differences expected to persist because of energetic allocation and life-history trade-offs. We compile a new global dataset of 61 diverse arthropod species which provides strong empirical evidence to support these predictions, demonstrating that contemporary populations have indeed evolved under these constraints. Our results provide a basis for using relatively feasible trait measurements to predict the adaptive capacity of diverse arthropod populations to geographic temperature gradients, as well as ongoing and future climatic warming. 
    more » « less
  2. Experiments and models suggest that climate affects mosquito-borne disease transmission. However, disease transmission involves complex nonlinear interactions between climate and population dynamics, which makes detecting climate drivers at the population level challenging. By analysing incidence data, estimated susceptible population size, and climate data with methods based on nonlinear time series analysis (collectively referred to as empirical dynamic modelling), we identified drivers and their interactive effects on dengue dynamics in San Juan, Puerto Rico. Climatic forcing arose only when susceptible availability was high: temperature and rainfall had net positive and negative effects respectively. By capturing mechanistic, nonlinear and context-dependent effects of population susceptibility, temperature and rainfall on dengue transmission empirically, our model improves forecast skill over recent, state-of-the-art models for dengue incidence. Together, these results provide empirical evidence that the interdependence of host population susceptibility and climate drives dengue dynamics in a nonlinear and complex, yet predictable way. 
    more » « less
  3. null (Ed.)
    The potential for adaptive evolution to enable species persistence under a changing climate is one of the most important questions for understanding impacts of future climate change. Climate adaptation may be particularly likely for short-lived ectotherms, including many pest, pathogen, and vector species. For these taxa, estimating climate adaptive potential is critical for accurate predictive modeling and public health preparedness. Here, we demonstrate how a simple theoretical framework used in conservation biology—evolutionary rescue models—can be used to investigate the potential for climate adaptation in these taxa, using mosquito thermal adaptation as a focal case. Synthesizing current evidence, we find that short mosquito generation times, high population growth rates, and strong temperature-imposed selection favor thermal adaptation. However, knowledge gaps about the extent of phenotypic and genotypic variation in thermal tolerance within mosquito populations, the environmental sensitivity of selection, and the role of phenotypic plasticity constrain our ability to make more precise estimates. We describe how common garden and selection experiments can be used to fill these data gaps. Lastly, we investigate the consequences of mosquito climate adaptation on disease transmission using Aedes aegypti -transmitted dengue virus in Northern Brazil as a case study. The approach outlined here can be applied to any disease vector or pest species and type of environmental change. 
    more » « less
  4. null (Ed.)
    The temperature-dependence of many important mosquito-borne diseases has never been quantified. These relationships are critical for understanding current distributions and predicting future shifts from climate change. We used trait-based models to characterize temperature-dependent transmission of 10 vector–pathogen pairs of mosquitoes ( Culex pipiens , Cx. quinquefascsiatus , Cx. tarsalis , and others) and viruses (West Nile, Eastern and Western Equine Encephalitis, St. Louis Encephalitis, Sindbis, and Rift Valley Fever viruses), most with substantial transmission in temperate regions. Transmission is optimized at intermediate temperatures (23–26°C) and often has wider thermal breadths (due to cooler lower thermal limits) compared to pathogens with predominately tropical distributions (in previous studies). The incidence of human West Nile virus cases across US counties responded unimodally to average summer temperature and peaked at 24°C, matching model-predicted optima (24–25°C). Climate warming will likely shift transmission of these diseases, increasing it in cooler locations while decreasing it in warmer locations. 
    more » « less
  5. Abstract Thermal ecology theory predicts that transmission of infectious diseases should respond unimodally to temperature, that is be maximized at intermediate temperatures and constrained at extreme low and high temperatures. However, empirical evidence linking hot temperatures to decreased transmission in nature remains limited.We tested the hypothesis that hot temperatures constrain transmission in a zooplankton–fungus (Daphnia dentifera–Metschnikowia bicuspidata) disease system where autumnal epidemics typically start after lakes cool from their peak summer temperatures. This pattern suggested that maximally hot summer temperatures could be inhibiting disease spread.Using a series of laboratory experiments, we examined the effects of high temperatures on five mechanistic components of transmission. We found that (a) high temperatures increased exposure to parasites by speeding up foraging rate but (b) did not alter infection success post‐exposure. (c) High temperatures lowered parasite production (due to faster host death and an inferred delay in parasite growth). (d) Parasites made in hot conditions were less infectious to the next host (instilling a parasite ‘rearing’ or 'trans‐host' effect of temperature during the prior infection). (e) High temperatures in the free‐living stage also reduce parasite infectivity, either by killing or harming parasites.We then assembled the five mechanisms into an index of disease spread. The resulting unimodal thermal response was most strongly driven by the rearing effect. Transmission peaked at intermediate hot temperatures (25–26°C) and then decreased at maximally hot temperatures (30–32°C). However, transmission at these maximally hot temperatures only trended slightly lower than the baseline control (20°C), which easily sustains epidemics in laboratory conditions and in nature. Overall, we conclude that while exposure to hot epilimnetic temperatures does somewhat constrain disease, we lack evidence that this effect fully explains the lack of summer epidemics in this natural system. This work demonstrates the importance of experimentally testing hypothesized mechanisms of thermal constraints on disease transmission. Furthermore, it cautions against drawing conclusions based on field patterns and theory alone. A freePlain Language Summarycan be found within the Supporting Information of this article. 
    more » « less